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Abstract-Design relations for the flow of a real gas in the presence of heat transfer are derived on the basis 
of A. A. Gukhman’s entropy method. 

NOMENCLATURE 

flow pressure [N;m’]; 
flow temperature C”K] ; 
stagnation temperature [OK]; 
critical flow temperature [“K] ; 
specific gas volume [m3/kg] ; 
gas constant [J/kg.K] ; 
compressibility coefficient ; 
mass heat capacity of a real gas at 
constant pressure, [J/kg.K] ; 
mass heat capacity of a real gas at 
constant volume [J/kg.K] ; 
adiabatic index of a real gas; 
adiabatic index of an ideal gas: 
sound velocity in a real gas [m/s]: 
ratio of sound velocities in a real gas 
and in an ideal gas (at constant 
temperature): 
flow velocity [m/s] ; 
gas flow rate per second [m/s]; 
critical velocity of a real gas [m/s] ; 
ratio of critical velocities of real and 
ideal gases (at a constant temperature 

T,); 
44,; 
gas density [kg/m31 ; 
reduced entropy; 
critical section [m”] ; 

TIT,,; 
F/F,,. 

TI-IE AIM of the present paper is to find out a 
number of relations for the ultrasonic region of 
flow of a real gas in the presence of heat transfer. 
To solve the problems stated, A. A. Gukhman’s 
very fruitful entropy method based on the 
hypothesis of a linear entropy approximation 
is employed. These problems related to the 
solution of a number of hydrodynamic problems 
on the flow of an ideal gas are considered in 
detail in [l, 21. 

In the present theoretical study the derivation 
and relations themselves naturally become 
complex due to the fact that in the thermo- 
dynamic sense the moving gas is considered to 
be real, and the heat transfer factor is still taken 
into account. 

Here, in a non-adiabatic flow in addition to 
the effect of friction and geometry there also 
appears the effect of heat transfer. 

Within the framework of a thermodynamic 
analysis it is possible to say only that thermal 
effects mostly manifest themselves weakly since 
the amount of heat enters into the perturbing 
function with a multiplier (k-l). 

Convective heat transfer in our case may be 
studied by using the Reynolds analogy. 

In [3] it is shown that under the effect of such 
convective heat transfer the difficulty may not be 
overcome. 

This testifies to the possibility of preserving a 
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general concept developed for adiabatic flow, 
in this case the applicability of the assumption 
of linear entropy approximation, because the 
thermal effect appears to be insufficient for a 
qualitative change in the character of a process. 

First of all, derive the equation, in which the 
relationship between stagnation and flow tem- 
peratures incorporates the above factors. 

In [4] assuming that pv is a function of pl: i.e. 

PO = cb(P, T) 

the expressions obtained may be presented as 
(in SI units) 

2 

w: - w; = 2 dp + j&T 5 RdT 
T 1 

2 

= 2 
S( ) 

$ dp+2ji,.s R(T, - G) (11 
T 

t 
1 

where the deviation ratio pr, 1~~ and the quantity 
x introduced by A. M. Rosen [S] are accordingly 
expressed in the form 

/iT= -&(t),=z-pig)T 

pp=~(~)p=z+ T(g), 

c 
x= P 

cp - Rpp,’ 

The right-hand side of expressions (2) is obtained 
by using the state equation for a real gas in the 
form 

To expand this integral, introduce the notation 
CI = pv. Taking into account that pu = q(p, T) 

it is possible to write 

Then 

j[F]dp = /da - /(;)dT 

1 1 1 

= pzv, - plv, - L a@4 SF 1 F dT. (51 
P 

Presenting expression (2) kr pp in the form 

4PV) 
[ 1 - = Rpp n P 

it is possible to write 

’ a(pv) sll 1 - 
8T P 

dT = Rji,(T, - TJ (6) 

1 

further, using the Lagrange formula upon trans- 
formations we have 

(p2v2)T2 - (pZ"2)T, = (T, - WQ,. 

Accordingly, substituting expression (6) into (5), 
upon a number of transformations, we arrive at 

~(~)Tdp = ~[~lTdp 

1 1 

= Wfzz - ZI)T,. (7) 

The integral 

pv = zRI: 

2 

$( ) 
3 dp 
?p T 

f4) It is necessary to mention that hem z2 and zi 
represent z at different pressures p2 and pi but 
at the same temperature, namely, at the initial 
tem~rature Tl. 

Substituting expression (7) into (1) we have 

entering into expression (1) is written Wf - w: = 2 RJiT $(TI - Tzf 

RT(z, - Z1)T1 . (8) 
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For jet stagnation we have T2 = To, z2 = (z& On the basis of the first law of thermodynamics 
and the jet velocity decreases from w1 = w it is possible to write down 
(in this case Tl = IT; z1 = z) to w2 = 0. Expres- 
sion (8) is then given as TdS = c dT + T ” (17) 

PT. _& R(T, - T) + RT(z, - z)~ = g (9) With the help of coefficient [S] 

w2 = 12a2 
CT’ 

Earlier we obtained expression [6] 

azr = <$-2&RT, 

where 

r& = rf .vczr 

expression (17) is presented thus 

(11) TdS = c, dT + p,pdu. (19) 

Using expression (4) and taking into account 
that do/u = - dp/p from expression (19) we 
have 

(12) Using the concept of the reduced entropy 

Cl, 21 

(13) 

Solving expressions (9Hll) simultaneously, 

(18) 

upon transformations, we have 

-1 
(14) 

Taking into account the fact that in the 
presence of heat transfer the stagnation tempera- 
ture is a variable quantity (Tb) and introducing 
the notation 

b==-.-----z ’ x - ’ ( - z& 
/IT x 

expression (14) is written as 

Tb l+b -_=------ 
T 1 - c12’ 

’ (15) 

(16) 

s 
rJ= - 

R 

and bearing in mind that 

(21) 

do=dS=dLm,+dq 
R RT 

(21’) 

as well as taking into account the relationship 
between cP and c, in the form [5] 

2 

c~-c~=R~~~~=R; (22) 

where 

11, = $ 

it is possible to write 

(23) 

Bearing in mind that mass flow rate (pwF = 
const) is constant when 

dp _=- 
P 

(24) 
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it is possible to write 

Expression (11) for the square of a critical 
velocity of a real gas also contains a stagnation 
temperature T,. Bearing in mind the presence of 
heat transfer, the stagnation temperature will be 
variable. Designating a variable stagnation 
temperature through Tb on the basis of expres- 
sions (10) and (11) it is possible to write down 

dw da _=L++T+$&+!$ (26) 
w CT a 0 CT 

Introducing the notation 0 = To/To and giving 
expression (25) in dimensionless parameters, we 
have 
do = d ln [fnrCr)z (j zF.qF’R -“” ] 

=dln$=$! (27) 

where [2] 

!!!I 3 5-5 
$ = (f&J or . (j 2~7. 5 R P: . (28) 

It was earlier obtained [7] that 

a2 = y2kRT (29) 

Obviously 
a,’ = yakRT,, (30) 

Solving expressions (11) and (30) simultaneously 
and taking into account heat transfer, i.e. taking 
a variable stagnation temperature T& we obtain 
the relation 

(31) 

Substituting a value of To into expression (16) 
and then introducing the expression for r 
into (28) also using (15) we have 

$ = (f‘l(,,) Z’. 8 Zr 

5 
x =Y.p 

PT I 1+; 

x x+(z - Zo)= 

_* %-!s 

Ii 

R 1’7 

(32) 

Owing to the linearity hypothesis accepted it 
is assumed [Z] 

dir 

X = const. 

Dividing both hand-sides of expression (27) into 
into di= dl/D and introducing the’ notation 

da dln$ 
-V “=df- d/ (33) 

we obtain [2] 

In+ = ~1 

or 
cp = 1”‘. (34) 

For isentropic gas flow 4 = const. = 1. In 
our case at To = Tb or 8 = 1 (no heat transfer 
in isentropic flow). 

Then from equation (28) we have* 

f,= [,.,C/rLG 3-1. L( ) 
(35) 

With regard for expression (35) expression (28) 
may be given in the form 

(36) 

Solving expressions (36) and (34) simultaneously, 
we have 

f, = f. of .eCqr’$i. (37) 

Expression (37) may serve as the basis of gas 
dynamic calculations of flow of a real gas in a 
channel in the presence of heat transfer. 

In gas-dynamic calculations of nozzles or 
cooled gas-turbine blades when a gas is con- 
sidered to be ideal due to the presence of high 

* The subscript s denotes isentropic flow conditions. 
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temperatures we obtain in the presence of heat a section corresponding to a prescribed value 
transfer ofl. 

(Lhdeal = Ai4 ’ f+ .e-“’ (38) 
It stands to reason that calculations incorpor- 

ating properties of a real gas and heat transfer 
For an ideal gas with no heat transfer (0 = 1) will be complicated and, consequently, for the 
we have the relation as that obtained in [2] problem stated to be solved it is necessary to 

(Lhdeal = Lid .eP’. (39) 
use the method of successive approximations. 

In conclusion, note that for gas-dynamic calcu- ACKNOWLEDGEMENT 
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fer it is not enough to have the law of change of interesting discussions of the problems considered in the 

cross-sectional area as in case of an ideal gas 
present paper 

flow [2]. 
In the case under consideration in equation 

(37) the presence of the expression /.+/. z,up 
1, 

being a function of p and 7; on the one hand, 
and a quantity 8 equal to TO/IT: on the other 
hand, causes the necessity to have a law of a 

2. 

pressure and temperature distribution along a 
channel length when making calculations. 3. 

Equations (37x39) allow the following im- 4. 
portant problems [2] to be solved: 

1. By a prescribed value of q and a law of 
change in f along the channel length it is 

5, 

possible to determine the change in flow para- 
meters along the channel under consideration; 6. 

2. when channel sizes, a value of q and 7, 
coefficient A are prescribed it is possible to find 
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QUELQUES RELATIONS POUR LA REGION SUPERSONIQUE D’ECOULEMENT D’UN 
GAZ REEL EN PRESENCE DUN TRANSFERT THERMIQUE 

RCum&Les relations pratiques pour l’ecoulement d’un gaz reel en presence d’un transfert thermique 
sont derivees de la methode entropique de A. A. Gukhman. 

BEZIEHUNGEN FtiR DEN ULTRASCHALLBEREICH DER STRGMUNG EINES REALEN 
GASES MIT WARMEUBERGANG 

Zmanunenfasaung-Die Beziehungen zur Berechnung der Striimung eines realen Gases mit Warmetiber- 
gang sind auf Grund der Entropie-Methode von A. A. Gukhman abgeleitet. 

HEKOTOPbIE COOTHOIIIEHBH B TPAHCSBYHOBOH OEJIACTH TEYEHHH 
PEAJIbHOI’O I’A3A HPH HAJIM=IMM TEIIJIOOBMEHA 

AHrioTaqasI-B pa6oTeHaocHoBea~~p0mifitH0r0MeTORa A.A.Fyx~atrasraseneHk.~ pacseTHbIe 

COOTHOUleHMH B TeYeHAA peaJIbHOI'0 I-aXd IIpH HWIM'IMM Tl?IIJIOObMeHa. 


