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Abstract—Design relations for the flow of a real gas in the presence of heat transfer are derived on the basis

of A. A. Gukhman’s entropy method.

NOMENCLATURE
flow pressure [N/m?];
flow temperature [°K 1;
stagnation temperature [°K];
critical flow temperature [°K];
specific gas volume [m?/kg];
gas constant [J/kg.K];
compressibility coefficient;
mass heat capacity of a real gas at
constant pressure, [J/kg.K]:
mass heat capacity of a real gas at
constant volume [J/kg.K];
adiabatic index of a real gas;
adiabatic index of an ideal gas;
sound velocity in a real gas [m/s];
ratio of sound velocities in a real gas
and in an ideal gas (at constant
temperature);
flow velocity [m/s];
gas flow rate per second [m/s];
critical velocity of a real gas [m/s];
ratio of critical velocities of real and
ideal gases (at a constant temperature
To);
w/a,:
gas density [kg/m?];
reduced entropy;
critical section [m?];
T/T,;
F/JF...

THE AIM of the present paper is to find out a
number of relations for the ultrasonic region of
flow of a real gas in the presence of heat transfer.
To solve the problems stated, A. A. Gukhman’s
very fruitful entropy method based on the
hypothesis of a linear entropy approximation
is employed. These problems related to the
solution of a number of hydrodynamic problems
on the flow of an ideal gas are considered in
detail in [1, 2].

In the present theoretical study the derivation
and relations themselves naturally become
complex due to the fact that in the thermo-
dynamic sense the moving gas is considered to
be real, and the heat transfer factor is still taken
into account.

Here, in a non-adiabatic flow in addition to
the effect of friction and geometry there also
appears the effect of heat transfer.

Within the framework of a thermodynamic
analysis it is possible to say only that thermal
effects mostly manifest themselves weakly since
the amount of heat enters into the perturbing
function with a multiplier (k-1).

Convective heat transfer in our case may be
studied by using the Reynolds analogy.

In [3] it is shown that under the effect of such
convective heat transfer the difficulty may not be
overcome.

This testifies to the possibility of preserving a
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general concept developed for adiabatic flow,
in this case the applicability of the assumption
of linear entropy approximation, because the
thermal effect appears to be insufficient for a
qualitative change in the character of a process.

First of all, derive the equation, in which the
relationship between stagnation and flow tem-
peratures incorporates the above factors.

In [4] assuming that pv is a function of pT, ie.

pv = ¢(p, T)

the expressions obtained may be presented as
(in SI units)

2
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where the deviation ratio ur, 11, and the quantity
x introduced by A. M. Rosen [ 5] are accordingly
expressed in the form
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The right-hand side of expressions (2) is obtained

by using the state equation for a real gas in the
form
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entering into expression (1} is written

2
o(pv)
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The integral
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To expand this integral, introduce the notation
o = pv. Taking into account that pv = ¢(p, T)
it is possible to write

da Oo
o= () o+ (35, om
Then

[ [ [ )

d
= P2l — PyUy — f[ é{;})} dT. (5)

Presenting expression (2) for y, in the form

apv) |
], -

it is possible to write

d
H ;’;”] dT=Ri(T,-T)

further, using the Lagrange formula upon trans-
formations we have

(p203)r, — (P202)r, = (T, — TRy,

Accordingly, substituting expression (6) into (5),
upon a number of transformations, we arrive at

2 2

op é‘(zRT)]

— 1 dp= d
j (5P>T P j [ p Jr P

= RTy(z, —

Zy )T,- N

It is necessary to mention that here z, and z,
represent z at different pressures p, and p; but
at the same temperature, namely, at the initial
temperature T,.

Substituting expression (7) into (1) we have

_ X
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— RTy(z; - Zl)T,]- (®



ULTRASONIC FLOW FOR A REAL GAS

For jet stagnation we have T, = T, z, = (zo)r
and the jet velocity decreases from w, = w

(in this case T, = T, z; = z) to w, = 0. Expres-
sion (8) is then given as
ﬁT'x i IR(TO —T)+ RT(zy — 2)r =%2‘ 9
w? = i%a2. (10)
Earlier we obtained expression [6]
d=g 2 trn,
where
= Ve Ve
2 _ 2. k+1j1 x—1
SR T T

-1
X [g V3 4z — zo)T“] + 1} (12)

2 x -1 -1
Yer = cr (uT)cr X (up)cr . (13)

Solving expressions (9)+(11) simultaneously,
upon transformations, we have

T |: 1 x-1
— =1+ (z — z4) ]
T Ar x o/T
k 1 x-1 -1
1= —— 2. .2 .2 14
% ( k+1°" G x ) (14)
Taking into account the fact that in the
presence of heat transfer the stagnation tempera-

ture is a variable quantity (T;) and introducing
the notation

1 x-1
b=_—- (z — zo)r
Ar x
(15)
etk x-1
Thr T k+1 x
expression (14) is written as
T 1+b
o 7 (16)

T 1 -—ci¥
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On the basis of the first law of thermodynamics
it is possible to write down

op
TdS = ¢, dT + T<6T> dv. (17)
With the help of coefficient [ 5]
T (op

=—| == 18
Ho= 7 ( 6T>,, (18)

expression (17) is presented thus
TdS = ¢, dT + p,pdv. (19)

Using expression (4) and taking into account
that dv/v = — dp/p from expression (19) we
have

dT dp

dS =c,— T — Rz, P (20

Using the concept of the reduced entropy

[1.2]

S
o=z (21
and bearing in mind that
ds dL,, +dq ,
do=F="rr @

as well as taking into account the relationship
between ¢, and ¢, in the form [5]

2

¢, = ¢ =Ridur =R (22)
Hr
where
By
My = —=
Hr
it is possible to write
2
¢, u\dT U, dp
do = —"——")——z—”—. (23)
<R w) T " “urp

Bearing in mind that mass flow rate (pwF =
const) is constant when

g’l: _(d_F+$v_) (24)
p F w
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it is possible to write

2
c uoyde w(df dw
do=(2_-"2)— 48[ = 4 —]) 25
(R ;41> T z,uT<f + w (25)

Expression (11) for the square of a critical
velocity of a real gas also contains a stagnation
temperature T;,. Bearing in mind the presence of
heat transfer, the stagnation temperature will be
variable. Designating a variable stagnation
temperature through T on the basis of expres-
sions (10} and (11) it is possible to write down

dw da di dT’ d¢ di

— =" + ==+ (26

w (258 T l T’ écr + /1 ( )
Introducing the notation 8 = T/T, and giving
expression (25) in dimensionless parameters, we
have

de =dln [fifcr)% W i Hiley ]
=dhny = dy 27)
Y
where [2]
Wy My G
Y= (fAl) b -0 %t R ur, (28)
It was earlier obtained [7] that
a’* = v*RT. (29)
Obviously
acr = J)crkRT (30)

Solving expressions (11) and (30) simultaneously
and taking into account heat transfer, i.e. taking
a variable stagnation temperature T, we obtain

the relation
T. 2 (&)
To k+1\y./)"

Substituting a value of T, into expression (16)
and then introducing the expression for r

into (28) also using (15) we have
zu, 2,

V= (fAEe) ¥ 0
x —1

2
2 \&, k+1 x

(31)

E. A. ORUDZHALIEV

2

er 1
X _-— 'iz)[l + -
Ur Hr
Se_He
x —1 TR
X " (z - ZO)T:I }

Owing to the linearity hypothesis accepted it
is assumed [ 2]

(32)

da = const.
dl —

Dividing both hand-sides of expression (27) into

into dI = di/D and introducing the notation
we obtain [2]

Iny = 7l
or )

p=1" (34)

For isentropic gas flow ¢ = const. = 1. In
our case at T, = Ty or 8 = 1 (no heat transfer
in isentropic flow).

Then from equation (28) we have*
St
fi= e e ™" “’>] g (35)
With regard for expression (35) expression (28)
may be given in the form

= | — o S 0* 2“1.
v-(;

§,

(36)

Solving expressions (36) and (34) simultaneously,
we have

fm pogrel ) (37)

Expression (37) may serve as the basis of gas
dynamic calculations of flow of a real gas in a
channel in the presence of heat transfer.

In gas-dynamic calculations of nozzles or
cooled gas-turbine blades when a gas is con-
sidered to be ideal due to the presence of high

* The subscript s denotes isentropic flow conditions.
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temperatures we obtain in the presence of heat
transfer

(fs)ideal = fideal ' 9% € a (38)

For an ideal gas with no heat transfer (0 = 1)
we have the relation as that obtained in [2]

(fs)ideal = fideal 'e_"i' (39)

In conclusion, note that for gas-dynamic calcu-
lations of flow of a real gas involving heat trans-
fer it is not enough to have the law of change of
cross-sectional area as in case of an ideal gas
flow [2].

In the case under consideration in equation
(37) the presence of the expression pup/-zpu,
being a function of p and T, on the one hand,
and a quantity 8 equal to T,/T, on the other
hand, causes the necessity to have a law of a
pressure and temperature distribution along a
channel length when making calculations.

Equations (37)+39) allow the following im-
portant problems [2] to be solved:

1. By a prescribed value of # and a law of
change in f along the channel length it is
possible to determine the change in flow para-
meters along the channel under consideration;

2. when channel sizes, a value of n and
coefficient A are prescribed it is possible to find
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a section corresponding to a prescribed value
of L.

It stands to reason that calculations incorpor-
ating properties of a real gas and heat transfer
will be complicated and, consequently, for the
problem stated to be solved it is necessary to
use the method of successive approximations.
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QUELQUES RELATIONS POUR LA REGION SUPERSONIQUE D’ECOULEMENT D’UN
GAZ REEL EN PRESENCE D’UN TRANSFERT THERMIQUE

Résumé—Les relations pratiques pour I’écoulement d’un gaz réel en présence d’un transfert thermique
sont dérivées de la méthode entropique de A. A. Gukhman.

BEZIEHUNGEN FUR DEN ULTRASCHALLBEREICH DER STROMUNG EINES REALEN
GASES MIT WARMEUBERGANG

Zusammenfassung—Die Beziechungen zur Berechnung der Strémung eines realen Gases mit Wirmeiiber-
gang sind auf Grund der Entropie-Methode von A. A. Gukhman abgeleitet.

HEKOTOPBLIE COOTHONIEHUA B TPAHC3BYHKOBON OBJIACTU TEYEHUA
PEAJIBHOT'O TA3A TIPU HAJWYNU TEIIJIOOBMEHA

AnHoTamma—B padoTe Ha ocuoBe dHTpoNHitHOrO MeToga A.A. 'yxMaHa BHBEleHH pac4eTHbIe
COOTHOILEHUA B TeYeHUN PEATHHOTO Ta3a NpPW HAJWYHAU TEIIO0bMEHa.



